[MS-CONFAS]:
Centralized Conference Control Protocol: Application Sharing Extensions

Intellectual Property Rights Notice for Open Specifications Documentation

- **Technical Documentation.** Microsoft publishes Open Specifications documentation ("this documentation") for protocols, file formats, data portability, computer languages, and standards support. Additionally, overview documents cover inter-protocol relationships and interactions.

- **Copyrights.** This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you can make copies of it in order to develop implementations of the technologies that are described in this documentation and can distribute portions of it in your implementations that use these technologies or in your documentation as necessary to properly document the implementation. You can also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications documentation.

- **No Trade Secrets.** Microsoft does not claim any trade secret rights in this documentation.

- **Patents.** Microsoft has patents that might cover your implementations of the technologies described in the Open Specifications documentation. Neither this notice nor Microsoft’s delivery of this documentation grants any licenses under those patents or any other Microsoft patents. However, a given Open Specifications document might be covered by the Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, or if the technologies described in this documentation are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplq@microsoft.com.

- **Trademarks.** The names of companies and products contained in this documentation might be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks.

- **Fictitious Names.** The example companies, organizations, products, domain names, email addresses, logos, people, places, and events that are depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments, you are free to take advantage of them. Certain Open Specifications documents are intended for use in conjunction with publicly available standards specifications and network programming art and, as such, assume that the reader either is familiar with the aforementioned material or has immediate access to it.
Revision Summary

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision History</th>
<th>Revision Class</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/12/2008</td>
<td>1.0</td>
<td>New</td>
<td>Initial version</td>
</tr>
<tr>
<td>2/13/2009</td>
<td>1.01</td>
<td>Minor</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>3/13/2009</td>
<td>1.02</td>
<td>Minor</td>
<td>Edited the technical content</td>
</tr>
<tr>
<td>7/13/2009</td>
<td>1.03</td>
<td>Major</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>8/28/2009</td>
<td>1.04</td>
<td>Editorial</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>11/6/2009</td>
<td>1.05</td>
<td>Editorial</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>2/19/2010</td>
<td>1.06</td>
<td>Editorial</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>3/31/2010</td>
<td>1.07</td>
<td>Major</td>
<td>Updated and revised the technical content</td>
</tr>
<tr>
<td>4/30/2010</td>
<td>1.08</td>
<td>Editorial</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>6/7/2010</td>
<td>1.09</td>
<td>Editorial</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>6/29/2010</td>
<td>1.10</td>
<td>Editorial</td>
<td>Changed language and formatting in the technical content.</td>
</tr>
<tr>
<td>7/23/2010</td>
<td>1.10</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>9/27/2010</td>
<td>2.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>11/15/2010</td>
<td>2.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>12/17/2010</td>
<td>2.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>3/18/2011</td>
<td>2.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>6/10/2011</td>
<td>2.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>1/20/2012</td>
<td>3.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>4/11/2012</td>
<td>3.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>7/16/2012</td>
<td>3.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>10/8/2012</td>
<td>3.1</td>
<td>Minor</td>
<td>Clarified the meaning of the technical content.</td>
</tr>
<tr>
<td>2/11/2013</td>
<td>3.1</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>7/30/2013</td>
<td>3.2</td>
<td>Minor</td>
<td>Clarified the meaning of the technical content.</td>
</tr>
<tr>
<td>11/18/2013</td>
<td>3.2</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>2/10/2014</td>
<td>3.2</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>Date</td>
<td>Revision History</td>
<td>Revision Class</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>4/30/2014</td>
<td>3.2</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>7/31/2014</td>
<td>3.2</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>10/30/2014</td>
<td>3.3</td>
<td>Minor</td>
<td>Clarified the meaning of the technical content.</td>
</tr>
<tr>
<td>3/30/2015</td>
<td>4.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>9/4/2015</td>
<td>4.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>8/1/2016</td>
<td>5.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
</tbody>
</table>
Table of Contents

1 Introduction .. 6
 1.1 Glossary ... 6
 1.2 References ... 7
 1.2.1 Normative References ... 7
 1.2.2 Informative References ... 7
 1.3 Overview ... 8
 1.4 Relationship to Other Protocols ... 9
 1.5 Prerequisites/Preconditions ... 9
 1.6 Applicability Statement ... 9
 1.7 Versioning and Capability Negotiation ... 9
 1.8 Vendor-Extensible Fields ... 9
 1.9 Standards Assignments ... 10

2 Messages .. 11
 2.1 Transport .. 11
 2.2 Message Syntax .. 11
 2.2.1 MCU Conference Roster Document Format ... 11
 2.2.1.1 MCU endpoint Element Syntax ... 11
 2.2.1.1.1 endpoint Element Extension Elements .. 11
 2.2.1.2 MCU conference-view Element Syntax ... 12
 2.2.1.2.1 entity-state Extension Elements ... 12
 2.2.1.2.1.1 media Element Extensions ... 12
 2.2.1.2.1.2 session-ids-type Element ... 12
 2.2.2 C3P request/response Document Content ... 12
 2.2.2.1 addUser Dial-out Request Document Syntax 12
 2.2.2.2 addUser Dial-in Request Document Syntax 12
 2.2.2.2.1 media Element .. 13

3 Protocol Details ... 14
 3.1 Common Details ... 14
 3.1.1 Abstract Data Model ... 14
 3.1.2 Timers .. 14
 3.1.3 Initialization .. 14
 3.1.4 Higher-Layer Triggered Events .. 14
 3.1.5 Message Processing Events and Sequencing Rules 14
 3.1.6 Timer Events ... 14
 3.1.7 Other Local Events .. 14
 3.2 Client Details ... 14
 3.2.1 Abstract Data Model ... 14
 3.2.2 Timers .. 14
 3.2.3 Initialization .. 14
 3.2.4 Higher-Layer Triggered Events .. 14
 3.2.5 Message Processing Events and Sequencing Rules 15
 3.2.5.1 SIP Dialog Events and Sequencing Rules ... 15
 3.2.5.1.1 Establishing a SIP INVITE Dialog .. 15
 3.2.5.1.2 Constructing the SDP Offer and handling the SDP Answer 15
 3.2.5.1.3 ICE Re-Invite .. 16
 3.2.5.1.4 Renegotiating Media .. 16
 3.2.5.1.5 New Sharer joins conference ... 16
 3.2.5.1.6 Specification of Capabilities .. 16
 3.2.5.2 RDP Events and Sequencing Rules ... 17
 3.2.5.2.1 Specification of GroupId ... 17
 3.2.5.2.2 Specification of RemoteName .. 17
 3.2.6 Timer Events ... 17
 3.2.7 Other Local Events ... 17
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 Server Details</td>
<td>17</td>
</tr>
<tr>
<td>3.3.1 Abstract Data Model</td>
<td>17</td>
</tr>
<tr>
<td>3.3.1.1 Correlation of Media Parameters</td>
<td>18</td>
</tr>
<tr>
<td>3.3.2 Timers</td>
<td>18</td>
</tr>
<tr>
<td>3.3.3 Initialization</td>
<td>18</td>
</tr>
<tr>
<td>3.3.4 Higher-Layer Triggered Events</td>
<td>18</td>
</tr>
<tr>
<td>3.3.5 Message Processing Events and Sequencing Rules</td>
<td>18</td>
</tr>
<tr>
<td>3.3.5.1 Processing the addUser Dial-in Request</td>
<td>18</td>
</tr>
<tr>
<td>3.3.5.1.1 Constructing the addUser Dial-in Response</td>
<td>19</td>
</tr>
<tr>
<td>3.3.5.2 SIP Dialog Events and Sequencing Rules</td>
<td>19</td>
</tr>
<tr>
<td>3.3.5.2.1 Rules for processing of Received SDP Offer and Constructing an Answer</td>
<td>19</td>
</tr>
<tr>
<td>3.3.5.2.2 ICE Re-Invite</td>
<td>20</td>
</tr>
<tr>
<td>3.3.5.2.3 Renegotiating Media</td>
<td>20</td>
</tr>
<tr>
<td>3.3.5.3 RDP Events and Sequencing</td>
<td>20</td>
</tr>
<tr>
<td>3.3.5.3.1 Specification of RemoteName</td>
<td>20</td>
</tr>
<tr>
<td>3.3.5.4 User Notification Sequencing for Establishing a Media Connection</td>
<td>20</td>
</tr>
<tr>
<td>3.3.5.5 User Notification Sequencing for Disconnecting Media</td>
<td>23</td>
</tr>
<tr>
<td>3.3.5.6 User Notification Sequencing for Switching Sharer in a Conference</td>
<td>24</td>
</tr>
<tr>
<td>3.3.5.7 User Notification Sequencing for Policy Enforcement</td>
<td>26</td>
</tr>
<tr>
<td>3.3.5.7.1 Specification of Appsharing Allowed Policy</td>
<td>26</td>
</tr>
<tr>
<td>3.3.5.7.2 Specification of Attendees Cannot Share Policy</td>
<td>26</td>
</tr>
<tr>
<td>3.3.5.7.3 Specification of Supported Capabilities</td>
<td>26</td>
</tr>
<tr>
<td>3.3.6 Timer Events</td>
<td>27</td>
</tr>
<tr>
<td>3.3.7 Other Local Events</td>
<td>27</td>
</tr>
<tr>
<td>4 Protocol Examples</td>
<td>28</td>
</tr>
<tr>
<td>4.1 addUser Dial-In</td>
<td>28</td>
</tr>
<tr>
<td>4.2 Sharer Switch</td>
<td>36</td>
</tr>
<tr>
<td>5 Security</td>
<td>45</td>
</tr>
<tr>
<td>5.1 Security Considerations for Implementers</td>
<td>45</td>
</tr>
<tr>
<td>5.2 Index of Security Parameters</td>
<td>45</td>
</tr>
<tr>
<td>6 Appendix A: Full XML Schema</td>
<td>46</td>
</tr>
<tr>
<td>6.1 asconfinfoextensions Namespace Schema</td>
<td>46</td>
</tr>
<tr>
<td>7 Appendix B: Product Behavior</td>
<td>47</td>
</tr>
<tr>
<td>8 Change Tracking</td>
<td>49</td>
</tr>
<tr>
<td>9 Index</td>
<td>51</td>
</tr>
</tbody>
</table>
1 Introduction

This document specifies proprietary extensions to the Centralized Conference Control Protocol that can be used to integrate application sharing conference modes within the framework defined in the Basic Architecture and Signaling protocol, as described in [MS-CONFBAS].

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in this specification are informative.

1.1 Glossary

This document uses the following terms:

200 OK: A response to indicate that the request has succeeded.

Application Sharing Multipoint Control Unit (ASMCU): A Multipoint Control Unit (MCU) that supports application sharing conferencing.

call: A communication between peers that is configured for a multimedia conversation.

call: A device that is connected to a computer network.

focus: A single user agent that maintains a dialog and Session Initiation Protocol (SIP) signaling relationship with each participant, implements conference policies, and ensures that each participant receives the media that comprise the tightly coupled conference.

INVITE: A Session Initiation Protocol (SIP) method that is used to invite a user or a service to participate in a session.

MCU-Conference-URI: A literal that specifies a URI that can be used to access conferencing services in the context of a Multipoint Control Unit (MCU).

Multipoint Control Unit (MCU): A server endpoint that offers mixing services for multiparty, multiuser conferencing. An MCU typically supports one or more media types, such as audio, video, and data.

participant: A user who is participating in a conference or peer-to-peer call, or the object that is used to represent that user.

Real-Time Transport Protocol (RTP): A network transport protocol that provides end-to-end transport functions that are suitable for applications that transmit real-time data, such as audio and video, as described in [RFC3550].

Remote Desktop Protocol (RDP): A multi-channel protocol that allows a user to connect to a computer running Microsoft Terminal Services (TS). RDP enables the exchange of client and server settings and also enables negotiation of common settings to use for the duration of the connection, so that input, graphics, and other data can be exchanged and processed between client and server.

SDP answer: A Session Description Protocol (SDP) message that is sent by an answerer in response to an offer that is received from an offerer.

SDP offer: A Session Description Protocol (SDP) message that is sent by an offerer.

Session Description Protocol (SDP): A protocol that is used for session announcement, session invitation, and other forms of multimedia session initiation. For more information see [MS-SDP] and [RFC3264].
Session Initiation Protocol (SIP): An application-layer control (signaling) protocol for creating, modifying, and terminating sessions with one or more participants. SIP is defined in [RFC3261].

Sharer: A client that is participating in a conference and is transmitting keyboard and mouse signals, and desktop graphics through a Real-Time Transport Protocol (RTP) media connection.

Uniform Resource Identifier (URI): A string that identifies a resource. The URI is an addressing mechanism defined in Internet Engineering Task Force (IETF) Uniform Resource Identifier (URI): Generic Syntax [RFC3986].

VBSS: Video Based Screen Sharing

Viewer: A client that is participating in a conference and is receiving mouse and keyboard signals, and desktop graphics through a Real-Time Transport Protocol (RTP) media connection.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the most recently published version of the referenced document. However, because individual documents in the library are not updated at the same time, the section numbers in the documents may not match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information.

[MS-ICE] Microsoft Corporation, "Interactive Connectivity Establishment (ICE) Extensions".

[MS-SDPEXT] Microsoft Corporation, "Session Description Protocol (SDP) Version 2.0 Extensions".

1.2.2 Informative References

[MS-ICE2] Microsoft Corporation, "Interactive Connectivity Establishment (ICE) Extensions 2.0".

[MS-RTASPF] Microsoft Corporation, "RTP for Application Sharing Payload Format Extensions".

[MS-RTP] Microsoft Corporation, "Real-time Transport Protocol (RTP) Extensions".

1.3 Overview

The Centralized Conference Control Protocol (C3P), as described in [MS-CONFBAS], extends the definition of a Session Initiation Protocol (SIP) event package for conference state, as described in [RFC4575], and defines a framework for aggregating more than one Multipoint Control Unit (MCU) in the context of a single logical conference, as described in [RFC4575].

Within C3P, centralized processing of conference media content is delegated to specialized media-type-specific MCU entities. For example, a multiparty conference that simultaneously encompasses Instant Messaging (IM), application sharing, and audio-video media types is processed by three separate logical MCU entities: one for IM, one for audio-video, and one for application sharing.

The Centralized Conference Control Protocol: Application Sharing Extensions [MS-CONFAS] specifies extensions to C3P that enable Session Initiation Protocol (SIP), Session Description Protocol (SDP), and Real-Time Transport Protocol (RTP)-based application sharing conference modalities and features within the multiple-MCU architecture that is described in [MS-CONFBAS].

The framework described in [MS-CONFBAS] calls for MCU entities to maintain separate, media-type-specific communication sessions with each protocol client. This specification assumes that the communication protocol for signaling and media handshakes between protocol clients and the logical Application Sharing Multipoint Control Unit (ASMCU) entity is the suite of protocols described by the following table:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Content Relevant to This Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MS-SIPRE]</td>
<td>Extensions to SIP</td>
</tr>
<tr>
<td>[MS-SDPEXT]</td>
<td>Extensions to SDP</td>
</tr>
<tr>
<td>[RFC3264]</td>
<td>An offer/answer model with SDP</td>
</tr>
<tr>
<td>[MS-RTP]</td>
<td>Extensions to RTP</td>
</tr>
<tr>
<td>[MS-RTASPF]</td>
<td>Remote transport application sharing payload format</td>
</tr>
<tr>
<td>[MS-RDPBCGR]</td>
<td>Remote Desktop Protocol (RDP), basic connectivity and graphics, remoting specification</td>
</tr>
<tr>
<td>[MS-RDPEMC]</td>
<td>Remote Desktop Protocol (RDP), multiparty virtual channel extension</td>
</tr>
</tbody>
</table>

This protocol specifies the necessary interactions between the previous protocols and the Centralized Conference Control Protocol (C3P). For example, this protocol specifies:

- Correlation of C3P conference state and message element and attribute values with a SIP **Uniform Resource Identifier (URI)** and SIP header values.
- Correlation of C3P conference state and message element and attribute values with the values of standard SDP attributes.
- Processing of C3P commands that result in an action on one or more SIP dialogs between the protocol server, or MCU, and protocol clients.
- Changes in SIP dialog states between a protocol client and the MCU that result in conference state changes and C3P notifications.
- Logic rules based on the C3P conference state that are required to be factored into media-negotiation behavior whenever a protocol client or MCU formulates an SDP offer or responds with an SDP answer.

This specification does not specify any XML schema extensions beyond that of [MS-CONFBAS]. It does define semantics of some parts of the XML schema and C3P message constructs in more detail than [MS-CONFBAS].

1.4 Relationship to Other Protocols

In addition to the dependencies described in [MS-CONFBAS] section 1.4, the following protocols are required components of a complete implementation:

- [MS-SDPEXT]
- [RFC3264]
- [MS-RTP]
- [MS-SIPRE]
- [MS-ICE]
- [MS-RTASPF]
- [MS-RDPEMC]
- [MS-ICE2]

Note that each of the previous protocols can be extended independently.

1.5 Prerequisites/Preconditions

In addition to the prerequisites and preconditions described in [MS-CONFBAS] section 1.5 and the protocol dependencies described in the previous list, the following assumptions apply:

- Both the protocol client and protocol server support mutually-interoperable implementations of all of the protocols listed in section 1.4.
- The application sharing payload format described in [MS-RTASPF] is supported. The protocol client and protocol server are required to be able to negotiate a viable RTP channel between them using the standard protocols mentioned in section 1.4.

1.6 Applicability Statement

The extensions defined in this specification apply when both of the following are true:

- The protocol client and protocol server both meet the prerequisites and preconditions in section 1.5.
- The protocol client and protocol server both intend to implement an application sharing conferencing mode within the framework and architecture described in [MS-CONFBAS].

1.7 Versioning and Capability Negotiation

This specification does not have any additional versioning and capability negotiation constraints beyond those described in [MS-CONFBAS].

1.8 Vendor-Extensible Fields

None.
1.9 Standards Assignments

None.
2 Messages

2.1 Transport

This specification does not introduce a new transport to exchange messages; it is capable of being used with SIP Transport. The constraints and conditions for exchanging messages are specified in [MS-CONFBAS].

2.2 Message Syntax

This specification does not introduce new message formats outside of the encapsulating message structures and envelopes specified in [MS-CONFBAS]. All messages within this section conform to the message syntax specification in [MS-CONFBAS] section 2.2.

Message elements and attributes that have specific semantics with respect to application sharing media are specified here. However, it is important to note that not all of the schema extension semantics specified in this specification are exclusive to application sharing media. They are emphasized in this specification to define them as they apply to the application sharing media type.

2.2.1 MCU Conference Roster Document Format

This section specifies extensions to the MCU Conference Roster Document Format specified in [MS-CONFBAS] section 2.2.5.

2.2.1.1 MCU endpoint Element Syntax

The model defined in [MS-CONFBAS] specifies the role of MCU entities in generating and maintaining MCU-specific endpoint elements. This section specifies extended message syntax and semantics of application sharing specific endpoint elements.

The XML schema for the type endpoint-type and the semantics of the elements it contains are originally established in [RFC4575]. Extensions to [RFC4575] are specified in [MS-CONFBAS]. This protocol further extends the semantics of the elements with endpoint-type relative to [RFC4575] and defines additional extension elements.

2.2.1.1.1 endpoint Element Extension Elements

This section defines the following extension elements of the media element within the endpoint element.

The media element is extended as follows:

session-id element: The session-id element carries the identifier that identifies the sharing session to which the endpoint is connected. This session identifier MUST be from the list of session-ids in entity-state defined in section 2.2.1.2. This element MUST be present. This element MUST match at least one session-id listed in session-ids. All endpoint elements with the same session-id are sharing or viewing in the same session.

status element: The status element declared in [RFC4575] section 5.7.3 has been reused here. An exception is that possible values MUST be limited to "sendonly" and "recvonly". "sendonly" denotes an endpoint which MUST be sharing in a conference and "recvonly" denotes an endpoint which MUST be viewing. This element MUST be present.

media-state element: The media-state element carries information about the connection state of the endpoint element's media. The value MUST be "joining" or "connected".
id attribute: The id attribute is an xs:string value that represents an integer. The value MUST be unique with respect to all users who are participants of the same conference.

2.2.1.2 MCU conference-view Element Syntax

This section specifies semantics for the notification message elements that reside within the MCU-specific entity-view element within the conference-view element defined in [MS-CONFBAS] section 2.2.4.4.

2.2.1.2.1 entity-state Extension Elements

This specification defines the following extension elements of the entity-state element.

2.2.1.2.1.1 media Element Extensions

The Conference Document format defined in [MS-CONFBAS] section 2.2.4 specifies the role of MCU entities in generating and maintaining MCU-specific entity-view elements and its sub-elements. This section specifies extended message syntax and semantics for MCU-specific entry elements within the media element within the entity-state element of the MCU-specific entity-view element.

The following extension semantics are defined relative to that of [RFC4575] section 5.3.4. Unless extension semantics are explicitly defined in this section or in [MS-CONFBAS], the semantics specified in [RFC4575] section 5.3.4 apply.

label attribute: The label attribute is under the entry element, and it is the identifier for the MCU-centric view of the conference media. The label value for the application sharing conference modality MUST be "applicationsharing" or "applicationsharing-video".

This attribute is the Session Description Protocol (SDP) label media attribute defined in [RFC4574] section 4.

2.2.1.2.1.2 session-ids-type Element

The XML type msas:session-ids-type is intended specifically for application sharing conference modalities. It is defined in the asconfinfoextensions namespace found at http://schemas.microsoft.com/rtc/2005/08/asconfinfoextensions.

The session-ids element MUST contain a list of session-id types, each of which represents the active sharing sessions within a conference. There SHOULD always be at least one session-id element in the session-ids list.

The semantics of the session-id-type is as follows:

session-id-type: Contains a xs:string which MUST be unique relative to other session-id elements in the session-ids list.

2.2.2 C3P request/response Document Content

2.2.2.1 addUser Dial-out Request Document Syntax

addUser dial-out requests are not supported by the ASMCU. Therefore, the rules specified in [MS-CONFBAS] section 2.2.3.15 do not apply.

2.2.2.2 addUser Dial-in Request Document Syntax

In addition to the syntax rules given in [MS-CONFBAS] section 2.2.3.17 for addUser dial-in requests, the additional rules in the following subsections apply.
2.2.2.2.1 media Element

Instances of the media element of the endpoint element can be present inside the endpoint element. If present, instances MUST conform to the specified media element syntax in section 2.2.1.2.1.1.

This specification does not define any processing rules or behavior related to endpoint media element(s) in addUser dial-in request messages. If instances of the media element are present in an addUser dial-in request, they are ignored.
3 Protocol Details

3.1 Common Details

3.1.1 Abstract Data Model
None.

3.1.2 Timers
For session-expires timer as defined in [RFC4028] section 4, a value of 600 seconds is implemented on the SIP dialog between the protocol client and protocol server.

3.1.3 Initialization
None.

3.1.4 Higher-Layer Triggered Events
None.

3.1.5 Message Processing Events and Sequencing Rules
None.

3.1.6 Timer Events
None.

3.1.7 Other Local Events
None.

3.2 Client Details

3.2.1 Abstract Data Model
None.

3.2.2 Timers
None.

3.2.3 Initialization
None.

3.2.4 Higher-Layer Triggered Events
None.
3.2.5 Message Processing Events and Sequencing Rules

3.2.5.1 SIP Dialog Events and Sequencing Rules

This section specifies rules that apply to events triggered on the SIP Dialog.

3.2.5.1.1 Establishing a SIP INVITE Dialog

This section specifies application sharing media specific SDP content rules for SIP INVITE messages associated with an addUser dial-in. In addition to the rules specified in [MS-CONFBASE] section 3.11 for outgoing SIP INVITE requests, the following rules apply to SIP INVITE messages that follow addUser dial-in requests sent to the ASMCU.

It is assumed that protocol clients have subscribed to conference notifications and have followed all of the rules and recommendations specified in [MS-CONFBASE]. Therefore, the protocol client is aware of the following information before constructing the SIP INVITE message and the SDP offer content contained within it.

The MCU-Conference-URI of the ASMCU that is extracted from the conf-uris element of the Conference Document, whose child purpose element contains the value “applicationsharing”, as specified in [MS-CONFBASE] section 2.2.2.4.

3.2.5.1.2 Constructing the SDP Offer and handling the SDP Answer

The following rules apply when constructing the SDP offer and handling the SDP answer.

- When constructing the SDP offer, the protocol client is at liberty to negotiate only one media instance as a sharer and one media instance as a viewer where those values are defined in the x-applicationsharing-role of the SDP offer. If more than one m line with x-applicationsharing-role as "sharing" or more than one m line with x-applicationsharing-role as "viewing" is present, the MCU MUST reject the additional media instances using the conventional "port=0" semantics specified in [RFC3264] section 8.1.
- If there are no media-type "m=applicationsharing" or "m=video" lines present in the initial offer, the offer MUST be rejected with a 488 Not Acceptable Here response code.
- The protocol client MUST specify its desired role in the SDP offer. If the protocol client is negotiating as a sharer, it MUST specify the x-applicationsharing-role to be "sharer".
- In the received SDP answer from the MCU, the x-applicationsharing-role MUST have a "reverse" role than the desired role of the protocol client. For example, if the protocol client specifies its role as "sharer", the server specifies its role to be "viewer".
- If any media-type "m=video" lines are present in the initial offer, the protocol client MUST specify the label attribute as "applicationsharing-video" for this m line. Also, the protocol client MUST specify an attribute with a value of either "sendonly" or "recvonly".
- If the initial SDP offer contains both media-type "m=applicationsharing" and "m=video", the "m=video" m line MUST contain an attribute with value "sendonly" if the "m=applicationsharing" m line specifies x-applicationsharing-role as "sharing" or "recvonly" if the "m=applicationsharing" m line specifies x-applicationsharing-role as "viewing". If this condition is not met, then the entire SDP offer is rejected with a 488 Not Acceptable Here response code.
- If a media-type "m=applicationsharing" is present in the SDP offer, it SHOULD contain an x-applicationsharing-contentflow attribute with a value of either "sendonly" or "recvonly" or "inactive". The protocol client MUST specify the x-applicationsharing-contentflow as either "sendonly" or "inactive" if x-applicationsharing-role is "sharing" or as either "recvonly" or "inactive" if x-applicationsharing-role is "viewing". The SDP answer from the ASMCU MUST NOT contain the x-applicationsharing-contentflow attribute, if the SDP answer contains at least one "m=video" m line and the "m=video" media instance is active. Else, the SDP answer MUST have x-applicationsharing-contentflow set to "inactive".

[MS-CONFAS] - v20160801
Centralized Conference Control Protocol: Application Sharing Extensions
Copyright © 2016 Microsoft Corporation
Release: August 1, 2016
If a media-type "m=applicationsharing" is present in the SDP offer and it contains an x-applicationsharing-contentflow attribute, then it MUST be "inactive" or "sendonly" if the x-applicationsharing-role is "sharing", or "inactive" or "recvonly" if the x-applicationsharing-role is "viewing". If there are no active "m=video" m lines present in the SDP offer, then the x-applicationsharing-contentflow attribute MUST NOT be "inactive". If any of these conditions are violated, then the SDP offer is rejected with a 488 Not Acceptable Here response code.

3.2.5.1.3 ICE Re-Invite

For completion of media negotiation, the rules specified in [MS-ICE] section 3.1.4 apply. A Final Offer and Answer with the chosen candidates MUST be exchanged to complete media negotiation.

3.2.5.1.4 Renegotiating Media

In the case that a protocol client wishes to renegotiate media, the protocol client MUST send a new SDP offer with a new m=applicationsharing line in the SDP media description with the existent m= line deactivated with conventional "port=0" semantics specified in [RFC3264].

3.2.5.1.5 New Sharer joins conference

In the case that the protocol client is connected as a sharer, it is ejected from the conference if another protocol client negotiates media as a sharer. The protocol client MUST receive a SIP BYE with the following header indicating why the protocol client was ejected:

ms-diagnostics-public:21000;reason="New sharer joined conference"

3.2.5.1.6 Specification of Capabilities

This section specifies the rules that apply to the specification of client conferencing capabilities. Individual client capabilities are parsed in the incoming SDP INVITE and sent to all conferencing users as C3P through the SIP dialog. The capabilities line in the SDP INVITE SHOULD be preceded by a=x-capabilities. Each capability SHOULD exist as name value pair strings. The values SHOULD be one of the following strings: "sendonly", "recvonly", "sendrecv", or "none". The capability name SHOULD contain only the following characters:

- lowercase English letters
- underscore characters
- hyphen characters

Each name and value in the pair MUST be separated by ";". Capabilities SHOULD be separated by ";". The following is an example of two valid capabilities:

a=x-capabilities:capability1="sendrecv";capability2="none"

If the capabilities line is incorrectly formatted, the SDP INVITE is rejected with a 488 Not Acceptable Here Response. After the Re-Invite sequence specified in section 3.2.5.1.3 completes, a C3P notification SHOULD be sent to the client indicating the SDP capabilities. The C3P format MUST follow the C3P conferencing extensions defined in [MS-CONFAS] section 2.2.2.2. The media element contains a sub-element titled media-capabilities. This element contains a media-capability element which has a name and a value. The data model is as follows.

```
|--user
 ||--media
 | ||--media-capabilities
 | | ||--media-capability
 | | | ||--name
 | | | ||--value
```

[MS-CONFAS] - v20160801
Centralized Conference Control Protocol: Application Sharing Extensions
Copyright © 2016 Microsoft Corporation
Release: August 1, 2016
The name and values specified in the SDP INVITE are stored in the corresponding fields of the media-capability.

3.2.5.2 RDP Events and Sequencing Rules

This section specifies rules that apply to events triggered by the RDP payload over the RTP media stream.

3.2.5.2.1 Specification of GroupId

As defined in [MS-RDPEMC] section 2.2.4.1, the GroupId of the Attendee Connected Protocol Data Unit MUST be set to a well-known value of "3766552189".

3.2.5.2.2 Specification of RemoteName

As defined in [MS-RDPEMC] section 2.2.4.1, the FriendlyName that is received on the Participant-Created PDU MUST match the user@host portion of the endpoint-uri of one user in the conference roster document.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

3.3 Server Details

3.3.1 Abstract Data Model

An MCU SHOULD maintain an internal table of active conferences that it is currently servicing. This table SHOULD be keyed by MCU-Conference-URI.

An MCU that maintains an internal representation of each active conference is recommended so that:

- It can easily retrieve current state information when processing messages.
- It can easily construct the contents of MCU Roster notification messages it has to send.

Because external messages always relate in some way to the Conference Document structure that is described in this protocol's overview, it is convenient to use that as the conceptual data model. In other words, the abstract data model is represented by the structure defined by the XML schema for the conference-info element and its entire hierarchy of subelements as described in [MS-CONFBAS] section 6.3.1.

Using the Conference Document structure as the basis for representing abstract state allows interim processing steps to be described in terms of data-modification operations made directly on a copy of the Conference Document. Where externally-visible C3P messages contain parts and fragments of the conference document, descriptions of the interim steps are used in subsequent sections to illustrate how the externally-visible state changes are realized.

Note that the actual data model can be implemented using a variety of techniques. An implementation is at liberty to represent such data in any way convenient.
3.3.1.1 Correlation of Media Parameters

The message processing and sequencing rules specified for the server role correlates media information across conference media instances, user endpoint media instances, and media descriptions contained in the SDP section of SIP messages.

- A conference media instance is described using the XML type conference-medium-type in an instance of an entry element within the media element within the MCU-specific entity-state element.

- A user media instance, as described using the XML type media-type as described in [MS-CONFBASE] section 6.3.1, is an instance of a media element within the endpoint element.

- Media instances are represented in SDP by the m= line.

- The type element in the media-type corresponds to the m=applicationsharing line in the SDP media description.

- The status element in the media element corresponds to the a=x-applicationsharing-role defined in [MS-SDPEXT] section 1.3, and MUST have a value of "sendonly" or "recvonly".

- If the protocol client is negotiating as a sharer, the x-applicationsharing-role value is set to "sharer". If the protocol client is negotiating as a viewer, this value is set to "viewer".

- An x-applicationsharing-role of "sharer" in the media description MUST correlate to a status of "sendonly" in the conference roster document. An x-application-sharing-role of "viewer" in the media description MUST correlate to a status of "recvonly".

- The media-content-flow element in the media element corresponds to the a=x-applicationsharing-contentflow defined in [MS-SDPEXT] section 1.3, and MUST have a value of "sendonly", "recvonly" or "inactive".

3.3.2 Timers

None.

3.3.3 Initialization

Upon conference creation, the MCU MUST publish a full notification populating the conference-view with the entity-state element.

3.3.4 Higher-Layer Triggered Events

None.

3.3.5 Message Processing Events and Sequencing Rules

Unless otherwise specified, the message processing rules defined in this specification assume that the commands documented herein are executed to their typical conclusion.

3.3.5.1 Processing the addUser Dial-in Request

Processing the addUser dial-in message consists of three general steps:

- Validating the message syntax and contents.
- Saving a record of the message contents for later reference when processing SIP INVITE messages.
Constructing and sending the **addUser** dial-in response message.

On receipt of the **addUser** dial-in message, the MCU first validates the message syntax according to rules specified in [MS-CONFBAS] section 2.2.3.17. If message validation fails, the MCU MUST send a "requestMalformed" C3P Response, as defined in [MS-CONFBAS] section 3.5.4.2.3.2.

Once the request is deemed valid, the MCU saves the contents of the message for later reference when processing the received SIP INVITE message for this user.

3.3.5.1.1 Constructing the addUser Dial-in Response

When constructing and sending the **addUser** dial-in response, the rules specified in [MS-CONFBAS] section 3.11.5.2.1 apply.

In addition, the following recommendation, as specified in [MS-CONFBAS] section 3.11.5.2.1, SHOULD be followed:

- The MCU SHOULD populate the **connection-info** element with the key-value pairs using the recommended key values for **mcu-server-uri** and **mcu-conference-uri**.

3.3.5.2 SIP Dialog Events and Sequencing Rules

This section specifies rules that apply to events triggered on the SIP dialog.

3.3.5.2.1 Rules for processing of Received SDP Offer and Constructing an Answer

This section specifies common rules that apply to handling application sharing specific SDP offers or answers within the MCU entity. The rules specified in this section assume that the correlation relationships between SDP media instances and user media instances have been established.

The following conceptual steps specify the requirements for processing a received SDP offer.

For each SDP media instance that is correlated with a user media instance:

- If the SDP offer specifies that a previously negotiated media stream has been removed, as specified in [RFC3264] section 8.2, the MCU MUST omit the user media instance from subsequent MCU Roster (user) notifications.
- If the SDP offer specifies that a previously rejected or removed media stream has been re-instantiated using the same SDP media "slot", as specified in [RFC3264] section 8.1, the MCU MUST include the user media instance in subsequent MCU Roster (user) notifications and continue.
- The MCU MUST determine the value of the **status** element in the **media** element in the user notification by analyzing the offered SDP direction attribute, **a=x-applicationsharing-role**. If the SDP direction attribute is "sharer", the **status** element MUST be set to "sendonly". If the attribute is "viewer", the element MUST be set to "recvonly".
- If the media capabilities of the implementation do not support the parameters of the offered media instance, the MCU MUST reject the media instance using the conventional "port=0" semantics specified in [RFC3264] section 8.1.
- When constructing the SDP answer for this media instance, the MCU MUST specify the "reverse" direction for media flow. For example, if the SDP offer is received with an attribute **a=x-applicationsharing-role** with the value "sharer", the MCU responds with a direction of **a=x-applicationsharing-role** with the value "viewer".
- When constructing the SDP answer for this media instance, the MCU MUST specify the **session-id** that the protocol client is joining in the **a=x-applicationsharing-session-id** field.
- If the offered media instance has more than one **m=** line for "sharing" or more than one **m=** line for "viewing", the offer MUST be rejected entirely.
- If the resulting SDP answer would reject all offered media instances, the MCU MUST respond to the INVITE message with a SIP 488 Reason Code with a "Not Acceptable Here" **reason** phrase and do no further processing.
The remainder of the SDP media description (m line) follows the specifications in [MS-SDPEXT] section 1.3, and is beyond the scope of this specification.

If the SDP offer does not contain any active video line, the MCU MUST send an SDP offer to all other participants in the call, declining VBSS with conventional "port=0" semantics specified in [RFC3264] and omitting the x-applicationsharing-contentflow attribute from the RDP media channel.

3.3.5.2.2 ICE Re-Invite

For completion of media negotiation, the rules specified in [MS-ICE] section 3.1.4 apply. A final offer and answer with the chosen candidates MUST be generated to complete media negotiation.

3.3.5.2.3 Renegotiating Media

This section describes processing rules for received SIP re-INVITE messages that occur on existing SIP dialogs. Renegotiation can occur when the protocol client wishes to switch from a sharer to viewer or a viewer to sharer.

When SIP re-INVITE messages are received, only the SDP content needs to be processed. It is assumed that a reasonable implementation would preserve the correlated relationships between media instances that were established or constructed during processing of the initially received SDP offer and thus those steps do not have to be repeated.

The following rules govern the way re-INVITE messages are processed:

- If the SDP offer contains new media instances, such as m= lines that have not previously appeared in any SDP offer, the new instances MUST be correlated with user media instances using the rules specified in section 3.3.1.1.
- The MCU MUST send a SIP 200 OK message containing the SDP answer in response to the received INVITE message.

3.3.5.3 RDP Events and Sequencing

This section specifies rules that apply to events triggered by the RDP payload over the RTP media stream.

3.3.5.3.1 Specification of RemoteName

As defined in [MS-RDPEMC] section 2.2.4.1, the FriendlyName that is sent in the Participant-Created PDU MUST be equal to the user@host portion of the endpoint-uri in the addUser request for that user.

3.3.5.4 User Notification Sequencing for Establishing a Media Connection

This section specifies the sequence of notifications that are sent when a user connects media to an application sharing conference.

After sending the 200 OK message containing the SDP answer with the rules defined in the previous section 3.3.5.2.1, the MCU MUST send an MCU Conference Roster (user) notification to the focus containing a "full" user state for the user that has just sent the INVITE message. This notification contains information indicating that the SIP dialog has been connected, as shown in the following example.

```xml
<user entity="sip:adams@fabrikam.com">  
<endpoint p7:endpoint-uri="sip:adams@fabrikam.com;opaque-user:epid:c23vlGz54F-0PtUJu9gQtwAA;gruu" entity="{25B88C75-A55D-4852-B36E-91C74046DA6D}" p7:session-`
If the conference supports video for screen sharing, the notification MUST contain a video-screen-sharing-enabled element inside the entity-view element of the notification, as shown in the following example.

```xml
<entity-view state="full" entity="Asmcu Url">
 <entity-capabilities>
 <supports-application-desktop-sharing>desktop</supports-application-desktop-sharing>
 <video-screen-sharing-enabled>true</video-screen-sharing-enabled>
 </entity-capabilities>
</entity-view>
```

Once all SDP negotiation has finished, the MCU MUST send a notification indicating that media is connecting. The notification MUST contain a media element with the media-state "joining", as shown in the following example.

```xml
<user entity="sip:haas@fabrikam.com">
 <endpoint p7:endpoint-uri="sip:haas@fabrikam.com;opaque=user:epid:2H2uT4mdmNYztVQWkEKKQAA;gruu" entity="D8D9c558-265b-4BD8-AA94-578403B4A674" p7:session-type="applicationsharing" xmlns:p7="http://schemas.microsoft.com/rtc/2005/08/confinfoextensions">
 <status>connected</status>
 <joining-method>dialed-in</joining-method>
 <media id="4">
 <type>applicationsharing</type>
 <status>sendonly</status>
 <p7:media-state>joining</p7:media-state>
 <p7:session-id>1</p7:session-id>
 </media>
 <p7:roles>
 <entry>attendee</entry>
 </p7:roles>
 </endpoint>
</user>
```

If a video media element is also present, the notification MUST contain a media element corresponding to the video media instance, as shown in the following example.

```xml
<status>connected</status>
<joining-method>dialed-in</joining-method>
```
Once the RDP connection is established, as defined in [MS-RDPEMC], a notification with media-state "connected" MUST <10> be sent, as shown in the following example.

```
<user entity="sip:haas@fabrikam.com">
 <endpoint p7:endpoint=
 "sip:haas@fabrikam.com;opaque=user:epid:2H2uT4mdmlWYztVQwEKDKQA;gruu" e
 <status>connected</status>
 <joining-method>dialed-in</joining-method>
 <media id="4">
 <type>applicationsharing</type>
 <status>sendonly</status>
 <separator xmlns="urn:ietf:params:xml:ns:conference-info-separator" />
 <p7:media-state>connected</p7:media-state>
 <p7:session-id>1</p7:session-id>
 </media>
 <media id="3">
 <type>video</type>
 <label>applicationsharing-video</label>
 <status>sendonly</status>
 <separator xmlns="urn:ietf:params:xml:ns:conference-info-separator" />
 <separator xmlns="urn:ietf:params:xml:ns:conference-info-separator" />
 <msci:media-source-id>2</msci:media-source-id>
 <msci:media-source-name>applicationsharing-video</msci:media-source-name>
 </media>
 </endpoint>
</user>
```
3.3.5.5 User Notification Sequencing for Disconnecting Media

Whenever a media instance is disconnected for a user, this information is conveyed in the notifications by omitting the media element for that connection.

The following notification indicates that a media connection does not exist for the protocol client.

```xml
<user entity="sip:haas@fabrikam.com">
 <endpoint xmlns:p7="http://schemas.microsoft.com/rtc/2005/08/confinfoextensions">
 <status>connected</status>
 <joining-method>dialed-in</joining-method>
 <p7:roles>
 <entry>attendee</entry>
 </p7:roles>
 <p7:authMethod>enterprise</p7:authMethod>
 <p7:accessMethod>internal</p7:accessMethod>
 </endpoint>
</user>
```

A sequence of the following two notifications indicates that media has been disconnected for the protocol client.

```xml
<user entity="sip:haas@fabrikam.com">
 <endpoint xmlns:p7="http://schemas.microsoft.com/rtc/2005/08/confinfoextensions">
 <status>connected</status>
 <joining-method>dialed-in</joining-method>
 <media id="3">
 <type>video</type>
 <label>applicationsharing-video</label>
 <status>sendonly</status>
 </media>
 <media id="4">
 <type>applicationsharing</type>
 <status>sendonly</status>
 </media>
 </endpoint>
</user>
```

The next notification is the missing media element:

```xml
<user entity="sip:haas@fabrikam.com">
 <endpoint>
 <status>connected</status>
 <p7:roles>
 <entry>attendee</entry>
 </p7:roles>
 <p7:authMethod>enterprise</p7:authMethod>
 <p7:accessMethod>internal</p7:accessMethod>
 </endpoint>
</user>
```
3.3.5.6 User Notification Sequencing for Switching Sharer in a Conference

This section describes cases where a protocol client is connected to a conference as a sharer and another protocol client attempts to negotiate media as a sharer. The MCU MUST eject the previous sharer by sending a SIP BYE to the original sharing protocol client with the following signaling header indicating why the protocol client was ejected from the conference:

"ms-diagnostics-public:21000;reason="New sharer joined conference"

The following sequence specifies the roster notifications that are sent when the sharer switches in a conference.

The new sharer negotiates media, and the sequence of notifications in section 3.3.5 are sent until the media-state "joining" notification is sent.

The following is an example of the state of the user:

```
<user entity="sip:adams@fabrikam.com">
 <endpoint p7:endpoint- uri="sip:haas@fabrikam.com;opaque=user:epid:2H2uT4mdmlWYztVQwEKDKQAA;gruu" entity="{D8D9C858-265B-4BD8-AA94-578403B4A674}" p7:session-type="applicationsharing" xmlns:p7="http://schemas.microsoft.com/rtc/2005/08/confinfoextensions">
 <status>connected</status>
 <joining-method>dialed-in</joining-method>
 <p7:roles>
 <entry>attendee</entry>
 </p7:roles>
 <p7:authMethod>enterprise</p7:authMethod>
 <p7:accessMethod>internal</p7:accessMethod>
 </endpoint>
</user>
```

The old sharer has its media disconnected and is subsequently ejected from the conference. A status notification containing no media element, which indicates that there is no media connection, MUST be sent.
In the following examples, Bacon is the original sharer and Adams is the viewer switching to a sharer. An example of the notification indicating that there is no media is as follows:

```
<user entity="sip:bacon@fabrikam.com">
 <endpoint p7:endpoint- url="sip:haas@fabrikam.com;opaque-user:epid:2H2uT4mdmlWYztVQwEKDKQAA;gruu" entity="{D8D8C858-265B-4BD8-AA94-578403B4A674}" p7:session-type="applicationsharing" xmlns:p7="http://schemas.microsoft.com/rtc/2005/08/confinfoextensions">
 <status>connected</status>
 <joining-method>dialed-in</joining-method>
 <p7:roles>
 <entry>attendee</entry>
 </p7:roles>
 <p7:authMethod>enterprise</p7:authMethod>
 <p7:accessMethod>internal</p7:accessMethod>
 </endpoint>
</user>
```

After the old sharer protocol client is ejected from the conference, a notification MUST be sent with a state attribute with the value "deleted," indicating that the protocol client has been ejected. An example of the notification that the client has been ejected is as follows:

```
<users state="partial">
 <user state="deleted" entity="sip:bacon@fabrikam.com" />
</users>
<separator xmlns="urn:ietf:params:xml:ns:conference-info-separator"/>
```

The new sharer now connects its media and a notification, indicating that the media-state is "connected", MUST be sent. An example of the notification indicating the media connection is as follows:

```
<user entity="sip:adams@fabrikam.com">
 <endpoint p7:endpoint- url="sip:haas@fabrikam.com;opaque-user:epid:2H2uT4mdmlWYztVQwEKDKQAA;gruu" entity="{D8D9C858-265B-4BD8-AA94-578403B4A674}" p7:session-type="applicationsharing" xmlns:p7="http://schemas.microsoft.com/rtc/2005/08/confinfoextensions">
 <status>connected</status>
 <joining-method>dialed-in</joining-method>
 <media id="3">
 <type>video</type>
 <label>applicationsharing-video</label>
 </media>
 <media id="4">
 <type>applicationsharing</type>
 <status>sendonly</status>
 <p7:media-state>connected</p7:media-state>
 <p7:session-id>1</p7:session-id>
 </media>
 <p7:roles>
 <entry>attendee</entry>
 </p7:roles>
 <p7:authMethod>enterprise</p7:authMethod>
 <p7:accessMethod>internal</p7:accessMethod>
 </endpoint>
</user>
```
3.3.5.7 User Notification Sequencing for Policy Enforcement

3.3.5.7.1 Specification of Appsharing Allowed Policy

The MCU MUST<11> send a permission element in the conference-view specified in section 2.2.2.2 of [MS-CONFBA] with the name "AllowUserToScheduleMeetingsWithAppSharing" and value either "true" or "false". If the value is "false", the MCU MUST reject any SIP INVITES to that conference with the following diagnostic code:

ms-diagnostics-public: 21001;reason="Attendees cannot share in this conference"

The C3P hierarchy is as follows:

|-- conference-view (+)
 | |-- entity-view (+)
 | | |-- entity-state (+)
 | | | |-- permissions (+)
 | | | | |-- permission-type (+)
 | | | | |-- name (+)
 | | | |-- value (+)

3.3.5.7.2 Specification of Attendees Cannot Share Policy

If the server-mode element specified in section 2.2.2.1 of [MS-CONFPR] is not set to "13" or is not specified, the MCU MUST reject all incoming SIP INVITES to the specified conference from users with role defined as "attendee" as specified in section 2.2.3.3 of [MS-CONFBA] and with SDP x-applicationsharingrole defined as "sharer", with the following ms-diagnostics code:

ms-diagnostics-public: 21002;reason="Attendees cannot share in this conference"

A permission element called AttendeesCanShare will be sent to the clients in the conference-view conference roster. This element MUST have the value "true", if the server-mode is set to "13", and "false" if the server-mode is not equal to "13" or is not specified.

|-- conference-view (+)
 | |-- entity-view (+)
 | | |-- entity-state (+)
 | | | |-- permissions (+)
 | | | | |-- permission-type (+)
 | | | | |-- name (+)
 | | | |-- value (+)

3.3.5.7.3 Specification of Supported Capabilities

The MCU MUST<12> send a supports-application-desktop-sharing element in the conference-view, specified in [MS-CONFBA] section 2.2.2.2, with value either "desktop", "singleApplication", or "none". If the value is "singleApplication", clients MUST NOT initiate a sharing session to share the desktop. If the value is "desktop" then the Clients can initiate a sharing session to share the desktop and any application. The value of "none" restricts clients from initiating an application sharing session.

The C3P hierarchy is as follows:

|-- conference-view (+)
 | |-- entity-view (+)
 | | |-- entity-capabilities (+)
 | | | |-- capabilities (+)
 | | | | |-- supports-application-desktop-sharing (+)
3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.
4 Protocol Examples

4.1 addUser Dial-In

In the following example, a typical call flow sequence for an **addUser** dial-in appears. In the example, Bacon has already created, joined, and subscribed to the conference. Adams has already joined and subscribed to the conference and has obtained the MCU service URI for **applicationsharing**. The dial-in flow begins with Adams joining the application sharing conference modality by sending a SIP INVITE message to the service URI.

Bacon is the sharer and Adams is the viewer in the following examples.

![Figure 1: addUser dial-in call flow sequence](image)

The following notification shows the conference roster state before Adams dials in to the conference.

```xml
<?xml version="1.0" encoding="utf-8"?>
<notify xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 notificationId="7#sip:bacon@fabrikam.com;gruu;opaque-app:conf:focus:id:37787CBB1D3C444C8E29BDC4A79709A1" C3PVersion="1"
```
from="https://server.fabrikam.com:444/LiveServer/ASMCU/"
to="https://server.Fabrikam.com:444/LiveServer/Focus"
xmlls:ietf:params:xml:ns:cccp">
<conference-info version="5"
entity="sip:bacon@fabrikam.com;gruu;opaque=app:conf:focus:id:37787CBB1D3C444C8E29BDC4A79709A1" xmlns="urn:ietf:params:xml:ns:conference-info">
<users>
  <user entity="sip:bacon@fabrikam.com">
    <endpoint p7:endpoint-uri="sip:bacon@fabrikam.com;opaque=user:epid:c_3X-18a_F6zpx2JfV1wA;gruu" entity="{CF3ACBF0-701C-4E3D-8EBA-49EDAD07F93}" p7:session-type="applicationsharing">
      <status>connected</status>
      <joining-method>dialed-in</joining-method>
      <media id="3">
        <type>video</type>
        <label>applicationsharing-video</label>
        <status>sendonly</status>
        <medium xmlns="urn:ietf:params:xml:ns:conference-info" />
        <medium xmlns="urn:ietf:params:xml:ns:conference-info" />
        <msci:media-source-id>2</msci:media-source-id>
        <msci:media-source-name>applicationsharing-video</msci:media-source-name>
        <p7:media-state>connected</p7:media-state>
        <p7:session-id>1</p7:session-id>
      </medium>
      <media id="4">
        <type>applicationsharing</type>
        <status>sendonly</status>
        <medium xmlns="urn:ietf:params:xml:ns:conference-info" />
        <p7:media-state>joining</p7:media-state>
        <p7:session-id>1</p7:session-id>
      </medium>
    </endpoint>
  </user>
</users>
<entity-view p5:state="full" entity="sip:bacon@fabrikam.com;gruu;opaque=app:conf:focus:id:37787CBB1D3C444C8E29BDC4A79709A1" xmlns="urn:ietf:params:xml:ns:conference-info">
  <entity-capabilities>
    <separator xmlns="urn:ietf:params:xml:ns:conference-info-separator" />
  </entity-capabilities>
</entity-view>
</conference-view>
The following sample message shows the INVITE message sent from Adams's protocol client.

```
INVITE sip:server.Fabrikam.com:5065;transport=tls SIP/2.0
FROM: "adams"<sip:adams@fabrikam.com>;tag=8d240414e3;epid=24e8722df9
TO: <sip:bacon@fabrikam.com;gruu;opaque=app:conf:applicationsharing:id:37787CBB1D3C444C8E29709A1>
CSEQ: 1 INVITE
CALL-ID: 34f4e3f2f15404793ea9544ee987ddd
...Other SIP Headers...
v=0
o= 0 0 IN IP4 11.0.0.25
s=session
c=IN IP4 11.0.0.25
b=CT:99980
m=applicationsharing 19575 TCP/RTP/SAVP 127
a=ice-ufrag:chA32g
a=ice-pwd:16B6JVs9K10xar3iMvCT5aY5eerRxDx
a=candidate:1 1 TCP-PASS 2120613887 11.0.0.25 17323 typ host
a=candidate:1 2 TCP-PASS 2120613374 11.0.0.25 17323 typ host
a=candidate:1 1 TCP-PASS 2121006591 11.0.0.25 19575 typ host
a=candidate:2 2 TCP-PASS 2121006078 11.0.0.25 19575 typ host
a=candidate:3 1 TCP-PASS 2120612863 192.168.0.245 2764 typ host
a=candidate:3 2 TCP-PASS 2120612350 192.168.0.245 2764 typ host
a=candidate:4 1 TCP-PASS 2121005567 192.168.0.245 10578 typ host
a=candidate:4 2 TCP-PASS 2121005054 192.168.0.245 10578 typ host
a=setup:active
a=connection:new
a=maxptime:200
a=rtpmap:19575 x-data/90000
a=encryption:rejected
a=x-applicationsharing-role:viewer
a=x-applicationsharing-media-type:rdp
a=x-applicationsharing-contentflow:recvonly
m=video 52889 RTP/AVP 122 123
a=x-ssrc-range:3719412481-3719412580
a=rtpc-fb:* x-message app send:src,x-pli recv:src,x-pli
a=rtpc-rsize
a=label:applicationsharing-video
a=ice-ufrag:KVS2
a=ice-pwd:QUHhxm7mMPQEpzJuMzGF7MXz
a=x-mediasettings:applicationsharing-video-required
a=candidate:1 1 UDP 2130706431 192.168.0.242 5004 typ host
a=candidate:2 1 UDP 2130705918 192.168.0.242 5004 typ host
a=candidate:2 2 UDP 2130705919 10.35.50.107 50048 typ host
a=candidate:2 2 UDP 2130705406 10.35.50.107 50049 typ host
a=x=candidate-ipv6:3 1 UDP 2130705918 192.168.0.242 5004 typ host
a=x=candidate-ipv6:3 2 UDP 2130705406 10.35.50.107 50049 typ host
a=x=candidate-ipv6:2 2 UDP 2130705918 192.168.0.242 5004 typ host
a=x=candidate-ipv6:1 1 UDP 2130705406 10.35.50.107 5004 typ host
```

The following is an example of the SDP answer the MCU sends in response.

```
SIP/2.0 200 OK
FROM: "adams"<sip:adams@fabrikam.com>;tag=8d240414e3;epid=24e8722df9
TO: <sip:bacon@fabrikam.com;gruu;opaque=app:conf:applicationsharing:id:37787CBB1D3C444C8E29BD C4A79709A1>;tag=805cb33db;epid=5398C874B2
CSEQ: 1 INVITE
...Other SIP Headers...
Session-Expires: 600;refresher=uac
...Other SIP Headers...
v=0
o-- 0 0 IN IP4 192.168.0.240
s=session
c=IN IP4 192.168.0.240
b=CT:1000
t=0 0
m=applicationsharing 52973 TCP/RTP/SAVP 127
c=IN IP4 11.0.0.25
a=rtpmap:127 x-data/90000
a=mid:1
a=setup:active
a=rtcp:52973
a=ice-ufrag://9dwQ
a=ice-pwd:SSowfx1gODx9Nbd1Uc5/gm+h8GUxySBm
a=candidate:1 1 tcp-pass 212061387 192.168.0.240 59052 typ host raddr 192.168.0.240 rport 59052
a=candidate:2 1 tcp-pass 2120613374 192.168.0.240 59052 typ host raddr 192.168.0.240 rport 59052
a=candidate:2 1 tcp-act 2121006591 192.168.0.240 49848 typ host raddr 192.168.0.240 rport 49848
a=candidate:2 2 tcp-act 2121006078 192.168.0.240 49848 typ host raddr 192.168.0.240 rport 49848
a=candidate:3 1 tcp-pass 6555135 11.0.0.25 52973 typ relay raddr 11.0.0.25 rport 52973
a=candidate:3 2 tcp-pass 6555134 11.0.0.25 52973 typ relay raddr 11.0.0.25 rport 52973
```
The following notification indicating that Adams's SIP dialog is connected is sent to all users subscribed to conference notifications.

<notify version="1.0" encoding="#8" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<notificationId="7#sip:bacon@fabrikam.com;gruu;opaque=app:conf:focus:id:37787CBB1D3C444C8E29BDC4A79709A1" C3PVersion="1" from="https://server.Fabrikam.com:444/LiveServer/ASMCU/
 to="https://server.Fabrikam.com:444/LiveServer/Focus">
<conference-info version="5" state="partial"
 entity="sip:bacon@fabrikam.com;gruu;opaque=app:conf:focus:id:37787CBB1D3C444C8E29BDC4A79709A1" xmlns="urn:ietf:params:xml:ns:conference-info">

The following notification indicating that Adams's SIP dialog is connected is sent to all users subscribed to conference notifications.

The following notification indicating that Adams's SIP dialog is connected is sent to all users subscribed to conference notifications.
The protocol client sends a re-INVITE with SDP with the chosen candidates similar to the following example.

```
INVITE sip:server.Fabrikam.com:5065;transport=Tls SIP/2.0
FROM: <sip:adams@fabrikam.com>;tag=8d240414e3;epid=24e8722df9
TO: <sip:bacon@fabrikam.com;gruu;opaque=app:conf:applicationsharing:id:37787CB61D3C4444C829BD
C44A9709A1>;tag=659cb33db;epid=5398C874B2
CS=2 2 INVITE
 CALL-ID: 34e43f2f1b5404793ea9544ee987ddd
 ..Other SIP Headers...
 v=0
 o=-- 0 0 IN IP4 192.168.0.245
 s=session
 c=IN IP4 192.168.0.245
 b=CT:99980
 t=0 0
 m=applicationsharing 21461 TCP/RTP/SAVP 127
 a=ice-ufrag:chA32g
 a=ice-pwd:16B6Vs9K1Oxar31MvfCT5at5eerrDxD
 a=candidate:7 1 TCP-ACT 2121005567 192.168.0.245 21461 typ host
 a=candidate:7 2 TCP-ACT 212100505d 192.168.0.245 21461 typ host
 a=remote-candidates:1 192.168.0.240 59052 2 192.168.0.240 59052
 a=setup:active
 a=connection:existing
 a=maxptime:200
 a=rtpmap:21461 x-data/90000
 a=x-applicationsharing-role:viewer
 a=x-applicationsharing-media-type:rdp
 a=x-applicationsharing-contentflow:recvonly
 m=video 50048 RTP/SAVP 122 123
 a=x-ssrc-range:3719412481-3719412580
 a=rtpmap-fo:* x-message app send:src,x-pli recv:src,x-pli
 a=rtpmap-fb:* x-message app send:src,x-pli recv:src,x-pli
 a=rtcp:fb
 a=rtcp:raise
 a=label:applicationsharing-video
 a=ice-ufrag:KVS2
 a=ice-pwd:QUhHmxm7mMPQEJuMzGF7MXZs
 a=x-mediasettings:applicationsharing-video=required
 a=candidate:2 1 UDP 2130705919 10.35.50.107 50048 typ host
 a=candidate:2 2 UDP 2130705406 10.35.50.107 50049 typ host
 a=cryptoscale:1 client AES CM_128 HMAC_SHA1_80
 inline:1ExxMJivlTB51wxy ט06YqjDGFaWlAQ+P0VOLlao|2^31|1:1
 a=remote-candidates:1 23.103.178.147 54897 2 23.103.178.147 51434
 a=sendonly
 a=rtpmap:122 X-H264DC/90000
```
An SDP answer with the chosen media candidates is sent in a 200 OK.

SIP/2.0 200 OK
FROM: <sip:adams@fabrikam.com>;tag=8d240414e3;epid=24e8722df9
TO: <sip:bacon@fabrikam.com;gruu;opaque=app:conf:applicationsharing:id:37787CBB1D3C444C8E29BD4A79709A1>;epid=5398C874B2;tag=805cb33db
CSEQ: 2 INVITE
CALL-ID: 34f4e3f2f1b5404793ae9544ee987ddd
...Other SIP Headers...
Session-Expires: 600;refresh=uac
...Other SIP Headers...
v=0
cseq=0
m=applicationsharing 59052 TCP/RTP/SAVP 127
s=session
c=IN IP4 192.168.0.240
b=CT:1000
t=0 0
m=video 54897 RTP/SAVP 122
a=rtpmap:122 x-h264uc/90000
a=fmtp:122 packetization-mode=1;mst-mode=NI-TC
a=rtpmap:123 x-ulpfecuc/90000

At this point, the SDP has fully negotiated, and the following notification is sent with media-state with the value "joining".
And finally, once the RDP negotiation completes over the RTP channel, a notification that media-state is "connected" is sent.

<?xml version="1.0" encoding="utf-8"?>
<notify xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
notificationId="9#sip:bacon@fabrikam.com;gruu;opaque=app:conf:focus:id:37787CBB1D3C444C8E29BDC4A79709A1" C3PVersion="1" from="https://server.Fabrikam.com:444/LiveServer/ASMCU/"
to="https://server.Fabrikam.com:444/LiveServer/Focus"
xmlns="urn:ietf:params:xml:ns:cccp"
conference-info version="7" state="partial"
entity="sip:bacon@fabrikam.com;gruu;opaque=app:conf:focus:id:37787CBB1D3C444C8E29BDC4A79709A1"
xmlns="urn:ietf:params:xml:ns:ccp"
users state="partial"
<brp user entity="sip:adams@fabrikam.com"
endpoint p7:endpoint
uri="sip:bacon@fabrikam.com;opaque=epid:QDSBVsaXT1qmoMIGmndEAAA;gruu"
entity="/B1B278AD-BB72-4FF2-A9E1-C94D76419FED" p7:session-type="applicationsharing"
xmlns="http://schemas.microsoft.com/rtc/2005/08/confinfoextensions">
<status>connected</status>
<joining-method>dialed-in</joining-method>
<media id="3">
<type>video</type>
<label>applicationsharing-video</label>
<status>recvonly</status>
<separator xmlns="urn:ietf:params:xml:ns:conference-info-separator" />
<separator xmlns="urn:ietf:params:xml:ns:conference-info-separator" />
<separator xmlns="urn:ietf:params:xml:ns:conference-info-separator" />
<msci:media-source-id>2</msci:media-source-id>
<msci:media-source-name>applicationsharing-video</msci:media-source-name>
</media>
<media id="4">
<type>applicationsharing</type>
<status>recvonly</status>
<separator xmlns="urn:ietf:params:xml:ns:conference-info-separator" />
<p7:media-state>joining</p7:media-state>
<p7:session-id>1</p7:session-id>
</media>
<p7:roles>
<entry>attendee</entry>
</p7:roles>
<p7:authMethod>enterprise</p7:authMethod>
<p7:accessMethod>internal</p7:accessMethod>
</endpoint>
</user>
</use-rs>
</conference-info>
</notify>

And finally, once the RDP negotiation completes over the RTP channel, a notification that media-state is "connected" is sent.

<?xml version="1.0" encoding="utf-8"?>
<notify xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
notificationId="10#sip:bacon@fabrikam.com;gruu;opaque=app:conf:focus:id:37787CBB1D3C444C8E29BDC4A79709A1" C3PVersion="1" from="https://server.Fabrikam.com:444/LiveServer/ASMCU/"
to="https://server.Fabrikam.com:444/LiveServer/Focus"
xmlns="urn:ietf:params:xml:ns:cccp"
conference-info version="8" state="partial"
entity="sip:bacon@fabrikam.com;gruu;opaque=app:conf:focus:id:37787CBB1D3C444C8E29BDC4A79709A1"
xmlns="urn:ietf:params:xml:ns:ccp"
users state="partial"
<brp user entity="sip:adams@fabrikam.com"
endpoint p7:endpoint
uri="sip:adams@fabrikam.com;opaque=epid:QDSBVsaXT1qmoMIGmndEAAA;gruu"
entity="/B1B278AD-BB72-4FF2-A9E1-C94D76419FED" p7:session-type="applicationsharing"
xmlns="http://schemas.microsoft.com/rtc/2005/08/confinfoextensions">
<status>connected</status>
4.2 Sharer Switch

In the example, Bacon is sharing in the conference and Adams is viewing. Adams then goes on to renegotiate and become a sharer. The following example shows a typical call-flow sequence for a sharer switch.
The new SDP offer to renegotiate is sent on the existing SIP dialog. The SDP offer sent by Adams contains a new **media-type** "m=applicationsharing" line indicating that it will be a sharer in the session. The original "m=applicationsharing" line has the value "port=0", indicating that it will be disconnected. The new "m=applicationsharing" line contains information about the new media that will be negotiated. The **media-type** "m=video", if present has its media direction reversed.

```
INVITE sip:server.Fabrikam.com:5065;transport=Tls SIP/2.0
From: <sip:adams@fabrikam.com>;Tag=63e63da53e;epid=7e108179c5
To: <sip:adams@fabrikam.com;gruu;opaque:conf:applicationsharing:id:DAA7C2F6E6303A4584E703180714F7AF>;tag=f62043201b;epid=8C5B7B76C2
CSeq: 3 INVITE
Call-ID: d076780f514a4?ce8d78c7bc3f2be347...
Other SIP Headers...
o=0 0 IN IP4 192.168.0.238
s=session
c=IN IP4 192.168.0.238
b=CT:99980
t=0 0
m=applicationsharing 0 RTP/SAVP 34
m=applicationsharing 14029 TCP/RTP/SAVP 127
a=ice-ufrag:ePx6ew
a=ice-pwd:TjmChfRDStxmmovuIP141G8iIfiJFQW
```
The MCU disconnects the original media connection and sends out the notification.

<?xml version="1.0" encoding="utf-8"?>
notificationId="13#sip:adams@fabrikam.com;gruu;opaque=app:conf:focus:id:DAA7C2F6E6303A4584E703180714F7AF" C3PVersion="1" from="https://server.Fabrikam.com:444/LiveServer/ASMCU" to="https://server.Fabrika
m.com:444/LiveServer/Focus"
<users state="partial">
<user entity="sip:adams@fabrikam.com">
<endpoint p7:endpoint-uri="sip:adams@fabrikam.com;opaque-user:repid:2H2uT4mdm1WYztVQwEKDKQAA;gruu" entity="(D89C9858-265B-4BD8-AA94-5784038A6741)" p7:session-type="applicationsharing">
<status>connected</status>
<ending-method>dialed-in</ending-method>
<p7:roles>
<entry>attendee</entry>
<p7:roles>
<p7:authMethod>enterprise</p7:authMethod>
<p7:accessMethod>internal</p7:accessMethod>
</endpoint>
</user>
</users>
</conference-info-info>
</notify>
The MCU then responds to the INVITE with a 200 OK and an SDP answer for the new media connection.

```plaintext
SIP/2.0 200 OK
From: <sip:adams@fabrikam.com>;tag=63e63da53e;epid=7e108179c5
To: <sip:adams@fabrikam.com;gruu;opaque=app:conf:applicationsharing:id:DAA7C2F6E6303A4584E703 180714F7AF>;epid=8C5B7B76C2;tag=f62043201b
CSeq: 3 INVITE
Call-ID: d076780f514a47ce8d78c7bc3f2be347
...Other SIP Headers...
Session-Expires: 600;refresher=uac
...Other SIP Headers...
Message-Body: v=0
o=- 0 2 IN IP4 192.168.0.240
s=session
c=IN IP4 192.168.0.240
b=CT:1000
t=0 0
m=applicationsharing 0 RTP/SAVP 127
a=rtpmap:127 x-data/90000
a=mid:1
m=applicationsharing 50589 TCP/RTP/SAVP 127
c=IN IP4 11.0.0.25
a=rtpmap:127 x-data/90000
a=mid:2
a=connection:existing
a=setup:active
a=rtcp:50589
a=ice-ufrag:5gh0jw
a=ice-pwd:nmjPs4GqOd4LVmjqQ3zUKgXb4bWNejWC
a=candidate:1 1 tcp-pass 2120613887 192.168.0.240 64479 typ host raddr 192.168.0.240 rport 64479
a=candidate:1 2 tcp-pass 2120613374 192.168.0.240 64479 typ host raddr 192.168.0.240 rport 64479
a=candidate:2 1 tcp-act 2121006591 192.168.0.240 51892 typ host raddr 192.168.0.240 rport 51892
a=candidate:2 2 tcp-act 2121006078 192.168.0.240 51892 typ host raddr 192.168.0.240 rport 51892
a=candidate:3 1 tcp-pass 6555136 11.0.0.25 50589 typ relay raddr 11.0.0.25 rport 50589
a=candidate:3 2 tcp-pass 6555134 11.0.0.25 50589 typ relay raddr 11.0.0.25 rport 50589
a=candidate:4 1 tcp-act 7076607 11.0.0.25 50589 typ relay raddr 11.0.0.25 rport 50589
a=candidate:4 2 tcp-act 7076094 11.0.0.25 50589 typ relay raddr 11.0.0.25 rport 50589
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:7Kyeimk6riyYFeH3F9GmhhnKG5iTftPfOJWPlMWB|2^31|1:1
a=label:applicationsharing
a=x-applicationsharing-role:viewer
a=x-applicationsharing-media-type:rdp
a=x-applicationsharing-contentflow:inactive
m=video 60780 RTP/SAVP 122 123
c=IN IP4 23.103.178.51
a=rtcp=ssrc
a=rtcp-fb:* x-message app send:src,x-pli recv:src,x-pli
a=x-ssrc-range:1100-1199
a=x-source-streamid:2
a=rtcp:60781
a=ice-ufrag:3skA
a=ice-pwd:oazz7hw6v+A2O68ItDBp2Stn
a=candidate:1 1 UDP 2130706431 23.103.178.51 60780 typ host
a=candidate:1 2 UDP 2130705918 23.103.178.51 60781 typ host
a=candidate:2 1 tcp-pass 174456319 23.103.178.147 57121 typ relay raddr 23.103.178.51 rport 58147
a=candidate:2 2 tcp-pass 174455806 23.103.178.147 57121 typ relay raddr 23.103.178.51 rport 58147
```
a=candidate:3 1 UDP 184548351 23.103.178.147 54097 typ relay raddr 23.103.178.51 rport 59712
a=candidate:3 2 UDP 184547838 23.103.178.147 51434 typ relay raddr 23.103.178.51 rport 59713
a=candidate:4 1 tcp-act 174848511 23.103.178.147 57121 typ relay raddr 23.103.178.51 rport 58147
a=candidate:4 2 tcp-act 174847998 23.103.178.147 57121 typ relay raddr 23.103.178.51 rport 58147
a=candidate:5 1 tcp-pass 174454783 2a01:111:2018:7::12 59098 typ relay raddr 23.103.178.51 rport 58147
a=candidate:5 2 tcp-pass 174454270 2a01:111:2018:7::12 59098 typ relay raddr 23.103.178.51 rport 58147
a=candidate:6 1 tcp-act 174846974 2a01:111:2018:7::12 59098 typ relay raddr 23.103.178.51 rport 58147
a=candidate:6 2 tcp-act 174846974 2a01:111:2018:7::12 59098 typ relay raddr 23.103.178.51 rport 58147
a=candidate:7 1 tcp-act 1684796415 2a01:111:2018:7::12 59098 typ relay raddr 23.103.178.51 rport 58147
a=candidate:7 2 tcp-act 1684795902 23.103.178.147 57121 typ srlf x raddr 23.103.178.51 rport 58147
a=candidate:8 1 UDP 184545791 2a01:111:2018:7::12 57494 typ relay raddr 23.103.178.51 rport 59712
a=candidate:8 2 UDP 184545278 2a01:111:2018:7::12 53307 typ relay raddr 23.103.178.51 rport 59713

Then the re-INVITE is sent from the new sharer protocol client.

INVITE sip:server.Fabrikam.com:5065;transport=Tls SIP/2.0
From: <sip:adams@fabrikam.com>;tag=63e63da53e;epid=7e108179c5
To: <sip:adams@fabrikam.com;gruu;opaque=app:conf:applicationsharing:id:DAA7C2F6E6303A4584E703180714F7AF>;tag=f62043201b;epid=8C5B7B76C2
Call-ID: d076780f514a47ce8d78c7bc3f2be347
...Other SIP Headers...
CSeq: 4 INVITE
o=0 0 IN IP4 192.168.0.238
s=session
c=IN IP4 192.168.0.238
b=CT:99980
r=0 0
m=applicationsharing 0 RTP/SAVP 34
m=applicationsharing 5688 TCP/RTP/SAVP 127
a=ice-ufrag:epx6ew
a=ice-pwd:TjwMytRxEdvN4ndxTaMG5G5MlJdMQX
a=candidate:2 1 TCP-Act 2121006591 192.168.0.238 5688 typ host
a=candidate:2 2 TCP-Act 2121006078 192.168.0.238 5688 typ host
a=encryption:AES_CM_128_HMAC_SHA1_80
a=remote-candidates:1 192.168.0.240 64479
a=setup:active
a=connection:existing
a=maxtime:200
a=rtpmap:5688
a=mid:2
a=rtpmap:122 x-data/90000
a=x-applicationsharing-role:sharer
a=x-applicationsharing-media-type:rdp
a=x-applicationsharing-contentflow:sendonly
m=video 50048 RTP/SAVP 122 123
The MCU responds with a 200 OK and the final SDP answer.

SIP/2.0 200 OK
From: <sip:adams@fabrikam.com>;tag=63e63da53e;epid=7e108179c5
To: <sip:adams@fabrikam.com;gruu;opaque=app:conf:applicationsharing:id:DAA7C2F6E6303A4584E703180714F7AF>;epid=f62043201b
CSeq: 4 INVITE
Call-ID: d076780f514a47ce8e8d78c7bc3f2be347
"...Other SIP Headers...
Session-Expires: 600;refresher=uac
"...Other SIP Headers...
o=0 3 IN IP4 192.168.0.240
s=session
c=IN IP4 192.168.0.240
b=CT:1000
t=0 0
m=applicationsharing 0 RTP/SAVP 127
a=rtpmap:127 x-data/90000
a=mid:1
m=applicationsharing 64479 TCP/RTP/SAVP 127
c=IN IP4 192.168.0.240
b=ct:64479
a=connection:existing
a=setup:passive
a=rtpc:64479
a=ice-ufrag:59h0jw
a=ice-pwd:mmjPs4GgOd4LIvmjQ13zUKqXb4bWNNejWC
a=candidate:1 tcp-pass 2120613887 192.168.0.240 64479 typ host raddr 192.168.0.240 rport 64479
a=candidate:2 tcp-pass 2120613374 192.168.0.240 64479 typ host raddr 192.168.0.240 rport 64479
a=remote-candidates:1 192.168.0.238 5688 2 192.168.0.238 5688
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:2KyeimK6rLyYPfEHHF9GmhhknKG5iTftPfOJWFLMWB|2.31|1:1
a=label:applicationsharing
a=x-applicationsharing:role:viewer
a=x-applicationsharing-media-type:rdp
a=x-applicationsharing-contenflow:inactive
m=video 54897 RTP/SAVP 122 123
c=IN IP4 23.103.178.147
a=rtpc:raise
a=rtpc-fb:* x-message app send:src,x=pli recv:src,x=pli
a=x-ssrc-range:1100-1199
a=x-source-streamid:2
a=rtpc:51434
a=ice-ufrag:3skA
a=ice-pwd:0szQ7hw6v+A2068ItDBp2Stn
The MCU then sends a notification indicating that the new sharer's `media-state` is "joining".

```xml

```

The MCU sends a notification indicating that the old sharer's `media` element has been removed. This notification might not be present if the user is deleted before its media disconnects. In that case, the protocol client only receives the following notification that the user was deleted.

```xml
```
The user deleted notification is sent for the old sharer.

The media connected notification is sent for the new sharer. This notification can be sent before the preceding user deleted notification because the two operations do not happen serially.
<type>video</type>
<label>applicationsharing-video</label>
<status>sendonly</status>
<separator xmlns="urn:ietf:params:xml:ns:conference-info-separator" />
<separator xmlns="urn:ietf:params:xml:ns:conference-info-separator" />
<separator xmlns="urn:ietf:params:xml:ns:conference-info-separator" />
<msci:media-source-id>2</msci:media-source-id>
<msci:media-source-name>applicationsharing-video</msci:media-source-name>
</media>
<media id="4">
<type>applicationsharing</type>
<status>sendonly</status>
<separator xmlns="urn:ietf:params:xml:ns:conference-info-separator" />
<p7:media-state>connected</p7:media-state>
<p7:session-id>1</p7:session-id>
</media>
<p7:roles>
<entry>attendee</entry>
</p7:roles>
<p7:authMethod>enterprise</p7:authMethod>
<p7:accessMethod>internal</p7:accessMethod>
</endpoint>
</user>
</users>
<separator xmlns="urn:ietf:params:xml:ns:conference-info-separator" />
</conference-info>
</notify>
5  Security

5.1  Security Considerations for Implementers
None.

5.2  Index of Security Parameters
None.
6 Appendix A: Full XML Schema

6.1 asconinfoextensions Namespace Schema

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental software. References to product versions include released service packs.

- Microsoft Office Communications Server 2007 R2
- Microsoft Office Communicator 2007 R2
- Microsoft Lync Server 2010
- Microsoft Lync 2010
- Microsoft Lync Server 2013
- Microsoft Lync Client 2013/Skype for Business
- Microsoft Skype for Business 2016
- Microsoft Skype for Business Server 2015

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears with the product version, behavior changed in that service pack or QFE. The new behavior also applies to subsequent service packs of the product unless otherwise specified. If a product edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not follow the prescription.

1<1> Section 3.2.5.1.2: Microsoft Office Communications Server 2007, Office Communications Server 2007 R2, Lync Server 2010, Lync Server 2013: This behavior is not implemented.

2<2> Section 3.2.5.1.6: Office Communicator 2007 R2, Office Communications Server 2007 R2: This behavior is not implemented.

3<3> Section 3.2.5.1.6: Office Communicator 2007 R2, Office Communications Server 2007 R2: This behavior is not implemented.

4<4> Section 3.2.5.1.6: Office Communicator 2007 R2, Office Communications Server 2007 R2: This behavior is not implemented.

5<5> Section 3.2.5.1.6: Office Communicator 2007 R2, Office Communications Server 2007 R2: This behavior is not implemented.

6<6> Section 3.2.5.1.6: Office Communicator 2007 R2, Office Communications Server 2007 R2: This behavior is not implemented.

7<7> Section 3.2.5.1.6: Office Communicator 2007 R2, Office Communications Server 2007 R2: This behavior is not implemented. Lync 2010 can interoperate with Office Communications Server 2007 R2 and Office Communications Server 2007 which do not send a C3P notification to the client indicating the SDP capabilities.

8<8> Section 3.3.5.2.1: Office Communications Server 2007, Office Communications Server 2007 R2, Lync Server 2010, Lync Server 2013: This behavior is not implemented.

9<9> Section 3.3.5.4: Office Communications Server 2007 ,Office Communications Server 2007 R2 ,Lync Server 2010 ,Lync Server 2013 : This behavior is not supported.
<10> Section 3.3.5.4: Office Communications Server 2007, Office Communications Server 2007 R2, Lync Server 2010, Lync Server 2013: The C3P media node for video is not supported.

<11> Section 3.3.5.7.1: Office Communicator 2007 R2, Office Communications Server 2007 R2: This behavior is not implemented.

<12> Section 3.3.5.7.3: Office Communicator 2007 R2, Office Communications Server 2007 R2, Lync 2010, Lync Server 2010: This behavior is not implemented.
8 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are classified as New, Major, Minor, Editorial, or No change.

The revision class **New** means that a new document is being released.

The revision class **Major** means that the technical content in the document was significantly revised. Major changes affect protocol interoperability or implementation. Examples of major changes are:

- A document revision that incorporates changes to interoperability requirements or functionality.
- The removal of a document from the documentation set.

The revision class **Minor** means that the meaning of the technical content was clarified. Minor changes do not affect protocol interoperability or implementation. Examples of minor changes are updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class **Editorial** means that the formatting in the technical content was changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class **No change** means that no new technical changes were introduced. Minor editorial and formatting changes may have been made, but the technical content of the document is identical to the last released version.

Major and minor changes can be described further using the following change types:

- New content added.
- Content updated.
- Content removed.
- New product behavior note added.
- Product behavior note updated.
- Product behavior note removed.
- New protocol syntax added.
- Protocol syntax updated.
- Protocol syntax removed.
- New content added due to protocol revision.
- Content updated due to protocol revision.
- Content removed due to protocol revision.
- New protocol syntax added due to protocol revision.
- Protocol syntax updated due to protocol revision.
- Protocol syntax removed due to protocol revision.
- Obsolete document removed.

Editorial changes are always classified with the change type **Editorially updated**.

Some important terms used in the change type descriptions are defined as follows:
- **Protocol syntax** refers to data elements (such as packets, structures, enumerations, and methods) as well as interfaces.

- **Protocol revision** refers to changes made to a protocol that affect the bits that are sent over the wire.

The changes made to this document are listed in the following table. For more information, please contact dochelp@microsoft.com.

<table>
<thead>
<tr>
<th>Section</th>
<th>Tracking number (if applicable) and description</th>
<th>Major change (Y or N)</th>
<th>Change type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.5.1.2 Constructing the SDP Offer and handling the SDP Answer</td>
<td>Added four additional rules for the applicationsharing attribute.</td>
<td>Y</td>
<td>Content update.</td>
</tr>
<tr>
<td>4 Protocol Examples</td>
<td>Added applicationsharing attribute information to the examples.</td>
<td>Y</td>
<td>Content update.</td>
</tr>
</tbody>
</table>
9 Index

A

Abstract data model
  client (section 3.1.1 14, section 3.2.1 14)
  server (section 3.1.1 14, section 3.3.1 17)
  correlation of media parameters 18

addUser dial-in example 28
Applicability 9

application/conference-info+xml
  schema asconfinfoextensions namespace 46

C

C3P request/response Document Content message
  addUser dial-in request document 12
  addUser dial-out request document 12

Capability negotiation 9

Client
  abstract data model (section 3.1.1 14, section 3.2.1 14)
  higher-layer triggered events (section 3.1.4 14, section 3.2.4 14)
  initialization (section 3.1.3 14, section 3.2.3 14)
  local events 14
  message processing 14
    RDP 17
    SIP dialog 15
    other local events 17
  sequencing rules
    RDP 17
    SIP dialog 15
  timer events (section 3.1.6 14, section 3.2.6 17)
  timers (section 3.1.2 14, section 3.2.2 14)

C3P re

D

Data model - abstract
  client 14
  server 17

E

Examples
  addUser dial-in 28
  sharer switch 36

F

Fields - vendor-extensible 9

G

Glossary 6

H

Higher-layer triggered events
  client (section 3.1.4 14, section 3.2.4 14)

server (section 3.1.4 14, section 3.3.4 18)

I

Implementer - security considerations 45
Index of security parameters 45
Informative references 7

Initialization
  client (section 3.1.3 14, section 3.2.3 14)
  server (section 3.1.3 14, section 3.3.3 18)

Introduction 6

L

Local events
  client 14
  server 14

M

MCU Conference Roster Document Format message 11
  MCU conference-view element 12
  MCU endpoint element 11

Message processing
  client 14
    RDP 17
    SIP dialog 15
  server (section 3.1.5 14, section 3.3.5 18)
    addUser dial-in request 18
    RDP 20
    SIP dialog 19
    user notifications
      disconnecting media 23
      establishing connection 20
      policy enforcement 26
      switching sharer in a conference 24

Messages
  C3P request/response Document Content
    addUser dial-in request document 12
    addUser dial-out request document 12
  MCU Conference Roster Document Format 11
  elements
    MCU conference-view 12
    MCU endpoint 11
  syntax 11
  transport 11

N

Normative references 7

O

Other local events
  client 17
  server 27

Overview (synopsis) 8

P
Parameters - security index 45
Preconditions 9
Prerequisites 9
Product behavior 47

R

RDP
client
message processing 17
sequencing rules 17
server
message processing 20
sequencing rules 20

References
informative 7
normative 7
Relationship to other protocols 9

S

Schema
application/conference-info+xml
asconfinfoextensions namespace 46

Security
implementer considerations 45
parameter index 45

Sequencing rules
client
RDP 17
SIP dialog 15
server 18
addUser dial-in request 18
RDP 20
SIP dialog 19
user notifications
disconnecting media 23
establishing connection 20
policy enforcement 26
switching sharer in a conference 24

Server
abstract data model (section 3.1.1 14, section 3.3.1 17)
correlation of media parameters 18
higher-layer triggered events (section 3.1.4 14, section 3.3.4 18)
initialization (section 3.1.3 14, section 3.3.3 18)
local events 14
message processing (section 3.1.5 14, section 3.3.5 18)
addUser dial-in request 18
RDP 20
SIP dialog 19
user notifications
disconnecting media 23
establishing connection 20
policy enforcement 26
switching sharer in a conference 24
other local events 27
sequencing rules 18
addUser dial-in request 18
RDP 20
SIP dialog 19
user notifications
disconnecting media 23

establishing connection 20
policy enforcement 26
switching sharer in a conference 24
timer events (section 3.1.6 14, section 3.3.6 27)
timers (section 3.1.2 14, section 3.3.2 18)
Sharer switch example 36
SIP dialog
client
message processing 15
sequencing rules 15
server
message processing 19
sequencing rules 19

Standards assignments 10
Syntax 11

T

Timer events
client (section 3.1.6 14, section 3.2.6 17)
server (section 3.1.6 14, section 3.3.6 27)

Timers
client (section 3.1.2 14, section 3.2.2 14)
server (section 3.1.2 14, section 3.3.2 18)

Tracking changes 49

Transport 11

Triggered events - higher layer
client 14
server 14

Triggered events - higher-layer
client 14
server 18

U

User notifications
disconnecting media (section 3.3.5.5 23, section 3.3.5.6 24)
establishing connection 20
policy enforcement 26

V

Vendor-extensible fields 9

Versioning 9